โรงงานไฟฟ้าพลังงานดีเซล

(Desel Power Plant)

 

โรงงานไฟฟ้าพลังงานดีเซล  เป็นโรงไฟฟ้าที่ได้รับพลังงานจากการเผาไหม้เชื้อเพลิงของเหลว คือ น้ำมันโซล่า โดยการเปลี่ยนพลังงานความร้อนให้เป็นพลังงานกล  นำไปขับหรือหมุนเครื่องกำเนิดไฟฟ้าอีกทีหนึ่ง เครื่องยนต์ส่วนมากมักจะใช้กับเครื่องกำเนิดขนาดเล็ก เหมาะสำหรับผู้ใช้ไฟที่ต้องการแหล่งกำเนิดไฟฟ้า สำหรับกรณีฉุกเฉิน หรือ ใช้ช่วยจ่าโหลดในช่วงระเวลาอันสั้นๆ ขนาดของเครื่องยนต์มีตั้งแต่แรงม้าน้อยๆ  จนถึงมากกว่าหนึ่งหมื่นแรงม้า ในปัจจุบันเครื่องยนต์ดีเซลนับว่าเป็นต้นเครื่องกำลังที่มีประสิทธิภาพสูง เป็นที่นิยมใช้กันอย่างแพร่หลาย ทั้งในโรงงานไฟฟ้า โรงงานอุตสาหกรรม รถไฟ รถบรรทุก เรือ ฯลฯ

เครื่องยนต์ดีเซล เป็นเครื่องยนต์ชนิดที่มีการเผาไหม้ภายใน คือ มีพลังงานความร้อนเกิดขึ้นภายในกระบอกสูบโดยตรง แรงดันจากการระเบิด จะกระทำบนลูกสูบ ส่งกำลังผ่านก้านสูบไปหมุดเพลาข้อเหวี่ยงเพื่อทำงานต่อไป ส่วนเครื่องยนต์ที่มีชนิดการเผาไหม้ภายนอก เช่น เครื่องจักรไอน้ำ หรือเครื่องกังหันไอน้ำ พลังงานความร้อนจะเกิดขึ้น ภายนอกกระบอกสูบ โดยการเผาน้ำในหม้อน้ำให้เดือดกลายเป็นไอน้ำ แล้วจึงนำไอน้ำ ไปดันลูกสูบ หรือปีกังหัน ซึ่งอยู่อีกที่หนึ่งให้ทำงาน

 

1. ส่วนประกอบของเครื่องยนต์ดีเซล

1.   โครงเครื่อง (Frame) คือ ชิ้นส่วนที่อยู่กับที่ทั้งหมดที่ยึดเครื่องยนต์ไว้ให้เป็น

รูปร่าง รวมทั้งเป็นที่ติดตั้งชิ้นส่วนที่เคลื่อนที่ ขณะเดียวกันก็ต้านแรงที่เกิดขึ้นจากการทำงานของเครื่องยนต์ ซึ่งได้แก่ กำลังที่ดันที่เกิดจากการเผาไหม้ของเชื้อเพลิง ที่พยายามจะดันฝาสูบ และแบริ่งของเพลาข้อเหวี่ยงให้แยกจากกัน และยังทำให้เครื่องยนต์เคลื่อนที่ไปบนแท่นที่รองรับอีกด้วย โครงเรื่องจึงต้องสร้างให้มีความแข็งแรงและมั่นคงเพื่อ ต้านทานแรงเหล่านั้น โครงเครื่องที่ติดตั้งใช้งานอยู่กับที่ โดยทั่วไปจะทำเป็นสองส่วนโดยตอนล่างจะทำหน้าที่เป็นฐานเครื่อง ใช้เป็นที่ติดตั้งแบริ่งเพลาข้อเหวี่ยง (Mainbering) และปิดห้องเพลาข้อเหวี่ยงด้ายล่าง ซึ่งเป็นที่รองรับน้ำมันหล่อลื่นด้วย ส่วนตอนบนเป็นห้องเพลาข้อเหวี่ยงและเสื้อสูบ ทั้งสองส่วนจะหล่อเป็นรูปคล้ายกล่อง มีสันหรือคานขวาง และครีบเพื่อให้เกิดความมั่นคง แข็งแรง วัสดุที่ใช้มักเป็นเหล็กหล่อ

2.   กระบอกสูบ (Cylinder) ทำจากเหล็กหล่อหรืออะลูมิเนียมผสม (Cast

Aluminium Alloy) จะต้องมีความต้านทานต่อการศึกหล่อ และมีการระบายความร้อนอย่างดี เนื่องจากผิวโลหะด้านในของกระบอกสูบได้รับการเสียดสีจากแหวนลุกสูบ และเกิดความร้อนสูงจากการเผาไหม้ของเชื้อเพลิง โดยเฉพาะอย่างยิ่งตอนบนของกระบอกสูบ และยังได้รับแรงเบียดทางข้างของลูกสูบด้วย

3.   ปลอกสูบ (Liner)  ในเครื่องยนต์ขนาดเล็ก กระบอกสูบ และปลอกสูบจะเป็น

ชิ้นเดียวกัน แต่เครื่องขนาดกลางและขนาดใหญ่ จะสร้างแยกจากกัน แล้วจึงนำมาสวมเข้าด้วยกันภายหลัง ปลอกสูบมีสองแบบคือ แบบเปียกและแบบแห้ง โดยแบบเปียกนั้นผิวนอกของปลอกสูบจะสัมผัสกับน้ำระบายความร้อนโดยตรง ทำให้ต้องอุปกรณ์กันน้ำรั่วซึมลงไปยังอ่างน้ำมันหล่อลื่น ส่วนแบบแห้งผิวนอกของปลอกสูบไม่สัมผัสกับน้ำระบายความร้อน แต่สัมผัสกับเนื้อโลหะของกระบอกสูบ บางครั้งอาจเคลือบผิวภายนอกของปลอกสูบด้วยทองแดง เพื่อให้แนบสนิทกับกระบอกสูบทำให้การถ่ายเทความร้อนได้ดีและง่ายต่อการถอดและใส่ วัสดุที่ใช้ทำปลอกสูบ ส่วนมากทำด้วยเหล็กหล่อผสมนิกเกิลและแมงกานีส ผิวด้านในปลอกสูบจะมีการกลึง เจียระไน และขัดอย่างดี และนำไปชุบผิวให้แข็ง โดยทำให้ผิวมีรูพรุนเล็กๆ ทั่วไป (มองด้วยตาเปล่าไม่เห็น)  เพื่อเป็นที่เก็บน้ำมันหล่อลื่นผนังปลอกสูบ

4.   ฝาสูบ (Cylinder Head)  ทำหน้าที่ปิดกระบอกสูบและกดปลอกสูบไว้ให้

แน่นเพื่อป้องกันมิให้แก๊สที่เกิดจากเผาไหม้รั่วออกมาได้โดยจะมีปะเก็นกั้นระหว่างฝาสูบกับกระบอกไว้ ฝาสูบมักทำด้วยอะลูมิเนียมผสม หรือเหล็กกล้าคาร์บอนต่ำ (Low Cast Steel)  ซึ่งจะต้องมีความคงทนต่อความดันและความรอนที่เกิดจากการเผาไหม้ในกระบอกสูบ และจะต้องมีการระบายความร้อนอย่างดี เพื่อป้องกันมิให้ฝาสูบร้าว

5.   ลูกสูบ (Piston)  ทำหน้าที่รับแรงดันแก๊สที่เกิดจากการลุกไหม้ส่งไปยังก้าน

สูบ และถ่ายเทความร้อนของแก๊สไปยังระบบระบายความร้อน เพื่อให้อุณหภูมิของโลหะลดต่ำลงอยู่ในเกณฑ์ปลอดภัย วัสดุที่ใช้ทำลูกสูบ จะต้องเบา แข็งแรง นำความร้อนได้ดี ขยายตัวน้อยเมื่อได้รับความร้อนและทนต่อการสึกหรอ ที่นิยมใช้มากที่สุด คือ ทำจาอะลูมิเนียมผสม หรืออะลูมิเนียมเผาอัดขึ้นรูป (Drop  Forged) นอกจากนี้ยังทำจากเหล็กหล่อ (Cast  Iron) และเหล็กเหนียวผสม (Cast  Iron  Alloy) ด้วย

1.      แหวนลูกสูบ (Piston  Ring) ทำหน้าที่ดังต่อไปนี้

-     ส่งถ่ายความร้อนจากลูกสูบ ไปยังน้ำระบายความร้อนโดยผ่านผนังกระบอกสูบ

-     กวาดน้ำมันที่เคลือบผิวกระบอกสูบ ให้ลงไปยังอ่างน้ำมันหล่อลื่น

-     ป้องไม่ให้อากาศที่ถูกอัดตัว และความดันของแก๊สที่เกิดจากการเผาไหม้ รั่วลงสู่เพลาข้อเหวี่ยง

แหวนลูกสูบแบ่งออกเป็นแหวนอัด (Compression Ring) และแหวนกวาด

น้ำมัน (Oil Control Ring)

แหวนอัดโดยทั่วไปจะเป็นรูปสี่เหลี่ยมผืนผ้า ผิวหน้าเรียบเป็นมัน เพื่อให้

สัมผัสกับกระบอกสูบได้ดี ทำด้วยเหล็กหล่อผสมสีเทา บางชนิดอาจเคลือบผิวหน้าด้วยโลหะ ที่มีความฝืดน้อย หรือใช้ทางเคมี เพื่อเป็นการช่วยให้แหวนใหม่ปรับตัวเข้ากับกระบอกสูบที่มีรอยหยาบเล็ก ๆ เป็นแห่ง ๆ อยู่ทั่วไปนั้น สึกออกไปอย่างสม่ำเสมอ ทำให้แหวนและผนังกระบอกสูบ แนบสนิททั่วกัน ไม่มีความฝืดเกิดขึ้นมากที่จุดใดจุดหนึ่ง

            แหวนกวาดน้ำมันทำด้วยเหล็กหล่อ มีผิวหนังแคบ เพื่อให้ได้แรงกดที่กระทำต่อผนังกระบอกสูบมาก ขอบล่างเว้าเข้าเพื่อให้ขอบกวาดน้ำมันลงข้างล่างตรงกลางหน้าแหวนจะถูกเซาะเป็นร่องโดยรอบ ภายในร่องถูกเจาะทะลุเป็นช่วงยาวเป็นตอน ๆ ส่วนในร่องแหวนกวาดน้ำมันที่ถูกลูกสูบจะเจาะรูระบายน้ำมันตลอดแนว โดนเจาะทะลุเข้าไปด้านในของลูกสูบ น้ำมันที่กวาดลงมาก็จะไหลลงทางรูที่เจาะไว้อย่างรวดเร็ว ถ้าหากไม่มีรูน้ำมันไหลลง น้ำมันส่วนนี้จะทำให้เกิดแรงดันต้านแรงดันแหวน ให้ถอยกลับไปอยู่ในร่องแหวนด้านใน ซึ่งทำให้การกวาดน้ำมันไม่เป็นผล ทำให้สิ้นเปลืองน้ำมันหล่อลื่น เพราะน้ำมันหล่อลื่นจะถูกเผาไปกับน้ำมันเชื้อเพลิง

2.   ก้านสูบ (Connecting  Rod)  ทำหน้าที่รับแรงจากลูกสูบ แล้วส่งให้กับเพลา

ข้อเหวี่ยง ก้านสูบทำจากเหล็กกล้าผสมชนิดทนแรงได้สูงมีพื้นที่หน้าตัดรูปตัวไอ (I) เพื่อให้มีความแข็งแรง น้ำหนักเบาจากปลายล่างถึงปลายบนเจาะรูไว้เพื่อให้น้ำมันหล่อลื่นซึมไปยังสลักลูกสูบ ก้านสูบเครื่องดีเซลขนาดใหญ่จะสร้างเป็นแบบปรับความโตของแบริ่งได้ชุดแบริ่งจะยึดติดกับบปลายก้านสูบด้วยสลักเกลียว ระหว่างชุดแบริ่งกับก้านสูบจะมีแผ่นรองคั่นอยู่เพื่อใช้ปรับกำลังอัดในกระบอกสูบคือ ถ้าแผ่นรองหนากำลังจะสูงขึ้นเพราะหัวลูกสูบอยู่ใกล้ฝาสูบมาก แต่ถ้าใส่แผ่นรองบบาง กำลังอัดจะลดลง เพราะหัวลูกสูบอยู่ห่างจากฝาสูบออกมา

3.   สลักลูกสูบ (Wristpin)  ทำหน้าที่ต่อลูกสูบกับก้านสูบให้ติดกัน โดยปกติรู

สลักที่ลูกสูบจะมีบู๊ชทำหน้าที่เป็นแบริ่งของสลักลูกสูบ แต่ถ้าลูกสูบเป็นอะลูมิเนียมผสม จะใช้เนื้อโลหะของลูกสูบเป็นแบริ่งในตัว การยึดสลักลูกสูบจะต้องมีแหวนล็อคที่ปลายทั้งสองข้าง เพื่อป้องกันไม่ให้สลักเลื่อนอกมา บางแบบอาจใช้ฝาปิดรูสลักแทนแหวนล็อคเพราะช่วยป้องกันไม่ให้น้ำมันหล่อลื่นที่สลักลูกสูบไหลออกมาที่ผนังกระบอกสูบด้วย

4.   เพลาข้อเหวี่ยง (Crankshaft)  เป็นส่วนที่สำคัญของเครื่องยนต์ ทำจากเหล็ก

กล้าที่มีคาร์บอนสูง หรือเหล็กกล้าผสมนิดเกิล โครเมียม และโมลิบดินั่ม  ใช้วิธีเผา ตีขึ้นรูป แล้วใช้เครื่องมือกล กัด กลึง ให้เป็นรูปตามต้องการ ในเครื่องยนต์ขนาดใหญ่ที่จัดวางสูบเป็นแถวเดียว และมีหลายสูบ เพลาข้อเหวี่ยงอาจทำเป็นสองท่อนมีหน้าแปลนตรองปลายสำหรับยึดให้ติดกัน เพลาข้อเหวี่ยงจะต้องแข็งแรงต้านทานแรงที่จะทำให้เพลาคดหรือโค้งได้ นั่นคือ แรงที่กระทำเป็นเส้นตรงจากลูกสูบผ่านก้านสูบมายังเพลาข้อเหวี่ยงและยังต้องทนต่อแรงบิดที่เกิดจากก้านสูบ ซึ่งพยายามดันให้เพลาข้อเหวี่ยงหมุนรอบตัวด้วย เพลาข้อเหวี่ยงจะต้องนำมาชุบแข็ง เพื่อลดแรงดันที่เกิดขึ้นในเนื้อโลหะ ซึ่งเกิดจากการตีขึ้นรูป และเป็นการเพิ่มความแข็งแรงให้กับเนื้อโลหะด้วย การชุบแข็งที่ใช้พลังงานไฟฟ้าทำให้เนื้อโลหะด้านนอกร้อนเร็ว นิยมใช้ชุบผิวเพลาข้อเหวี่ยงส่วนที่จะต้องเกิดการเสียดสี ให้มีผิวแข็ง ทนทานต่อการสึกหรอ แต่เนื้อโลหะภายในยังคงเหนียวเหมือนเดิม ผิวของเลาส่วนที่หมุนในแบริ่งจะต้องได้รับการเจียระนัย และขัดเป็นพิเศษเพื่อให้ได้ผิวที่เรียบจริง ๆ

5.   แบริ่ง (bearing) ทำหน้าที่รองรับเพลา และชิ้นส่วนอื่น ๆ ที่เคลื่อนที่ เพื่อลด

ความฝืด จากการสัมผัสกันของชิ้นส่วนต่าง ๆ โดยมีเยื่อบาง ๆ ของน้ำมันหล่อลื่นคั่นอยู่ระหว่างกลาง และยังทำหน้าที่ถ่ายเทความร้อนที่เกิดขึ้นจากการเสียดสีนั้นด้วยแบริ่งที่ใช้กับเพลาข้อเหวี่ยงเป็นแบบเนื้อเรียบ แบ่งเป็นสองส่วนนำมาประกบเข้าด้วยกัน เนื้อแบริ่งเป็นโลหะอ่อน เช่น ดีบุก หรือตะกั่ว หลอมหรือหล่อติดกับฝาแบริ่ง จากนั้นนำไปกลึงให้ได้ขนาดตามที่ต้องการ และเซาะร่องให้น้ำมันเข้าไปหล่อลื่นได้ แบริ่งที่ใช้กับสลักลูกสูบเป็นแบบปลอกทองเหลือง หรือบรอนซ์ โดยการกลึงแล้วเซาะร่องน้ำมันหล่อลื่นไว้ภายใน แบบบอื่นก็มีใช้กันบ้างเช่น แบบลูกปืนกลม (Ball Bearing) และแบบลูกกลิ้ง (Roller Bearing)

6.   ล้อช่วยแรง (Fly  Wheel) มีหน้าที่ทำให้เกิดแรงบิดเสมอในการหมุนของ

เพลาข้อเหวี่ยง สำหรับเครื่องยนต์รอบบช้าจะมีล้อช่วยแรงขนาดใหญ่กว่าเครื่องยนต์ที่มีความเร็วสูง ล้อช่วยแรงเป็นลูกล้อหรือจานที่มีน้ำหนักมาก ประกอบติดอยู่กับเพลาข้อเหวี่ยง เมื่อเพลาข้อเหวี่ยงหมุน ล้อจะช่วยแรงจะได้รับพลังงานจลน์ และสะสมเพิ่มมากขึ้นเรื่อยๆ เมื่อความเร็วเพิ่มมากขึ้น พลังที่สะสมไว้จะถูกนำออกมาใช้เมื่อเพลาข้อเหวี่ยงหมุนช้าลงพลังงานที่ลูกสูบส่งให้กับเพลาข้อเหวี่ยงนั้นไม่เป็นไปอย่างสม่ำเสมอโดยจะส่งมามากที่สุดเมื่อลูกสูบอยู่ในตำแหน่งเริ่มจังหวะกำลังส่วนในจังหวะอื่นจะไม่มีพลังงานส่งมาเลยจึงเป็นเหตุให้เครื่องยนต์หมุนช้าบ้างเร็วบ้างการใช้ล้อช่วยแรงเป็นการช่วยให้เครื่องยนต์มีความเร็วสม่ำเสมอดีขึ้นเครื่องยนต์ที่มีลูกสูบเดียวจะต้องใช้ล้อช่วยแรงขนาดใหญ่เพราะพลังงานที่เกิดขึ้นในแต่ละจังหวะจะแตกต่างกันมากส่วนเครื่องยนต์ที่มีหลายสูบพลังงานที่เกิดขึ้นจะเป็นไปอย่างต่อเนื่องล้อช่วยแรงจึงมีขนาดเล็กลงได้

7.   ลิ้น (Valve) มีหน้าควบคุมอากาศที่เข้ากระบอกสูบของเครื่องยนต์ 4 จังหวะ

ควบคุมการปล่อยไอเสียออกจากกระบบอกสูบของเครื่องยนต์ทั้ง 4จังหวะและ2 จังหวะบางแบบ นอกจากนี้ก็ยังมีลิ้นปล่อยน้ำมันเชื้อเพลิงเข้า ลิ้นปล่อยอากาศอัดเข้าสตาร์ทสำหรับเครื่องยนต์ขนาดใหญ่ โดยปกติเครื่องยนต์ 4 จังหวะ จะมีลิ้นไอดีและลิ้นไอเสียอย่างเท่ากัน แต่ถ้าต้องการให้เครื่องยนต์ที่มีความเร็วรอบสูงขึ้น จะต้องออกแบบลิ้นไอดีให้มีขนาดใหญ่กว่าลิ้นไอเสียประมาณ25-35 เปอร์เซ็นต์ เพื่อให้อากาศไหลเร็ว และสะดวกขึ้น เครื่องยนต์ 4 จังหวะบางแบบจะใช้ลิ้นไอดีและไอเสียอย่างละ 2 ตัว ต่อเนื่องกระบอกสูบ เนื่องจากมีข้อดีคือ

-  ที่ฝาสูบมีเนื้อที่ของลิ้นกว้างขึ้น

-  ลิ้นต้องไม่เปิดมาก เพราะขนาดของลิ้นเล็กลง จึงทำให้ลิ้นปิด-เปิดได้เร็วขึ้น

-  ความร้อนสามารถถ่ายเทไปยังบ่าลิ้นได้เร็วทำให้อุณหภูมิของลิ้นไม่สูงมากนัก

            ตัวลิ้นและบ่าจะต้องทนต่อการสึกหรอเป็นอย่างดี โดยเฉพาะลิ้นไอเสีย จะต้องทนต่ออุณหภูมิสูงๆ ได้เพราะจะต้องเปิดให้ก๊าซที่มีอุณหภูมิสูงไหลผ่านออก ส่วนมากทำด้วยเหล็กกล้าผสมซิลิคอนและโครเมี่ยมหรือเหล็กกล้าผสมนิกเกิลและโครเมี่ยม ส่วนลิ้นไอดีไม่ค่อยมีปัญหามากนัก เพราะถึงแม้ว่าจะได้รับความร้อนจากการเผาไหม้ของเชื้อเพลิงโดยตรง แต่ก็ได้รับการระบายความร้อนจากอากาศที่ไหลผ่านเมื่อลิ้นเปิด โลหะที่ใช้ทำ ได้แก่ เหล็กกล้าผสมคาร์บอน

8.   กลไกยกลิ้น (Valve Gear) มีหน้าที่บังคับการปิด-เปิด ลิ้นไอดีและลิ้นไอเสีย

นอกจากนั้นอาจใช้บังคับลิ้นฉีดน้ำมันหรือลิ้นลมสตาร์ทกลไกยกลิ้นของเครื่องยนต์ส่วนมากประกอบด้วย

-     กระเดื่อง สำหรับกดลิ้น

-     สปริงลิ้น

-     ก้านส่งลิ้น

-     เพลาลูกเบี้ยว

กระเดื่องสำหรับกดลิ้น ขณะทำงานปลายทั้งสองข้างจะกระดกขึ้น-ลง โดยมีเพลากระเดื่องเป็นจุดหมุน ปลายกระเดื่องข้างหนึ่งรับกำลังงานจากก้านส่งลิ้น อีกข้างหนึ่งทำหน้าที่บังคับลิ้น โดยแตะที่ปลายก้านลิ้น

สปริงลิ้น ทำหน้าที่บังคับลิ้นให้ปิด โดยสปริงลิ้นจะต้องมีแรงมากพอที่จะเอา

ชนะแรงเฉื่อยของกลไกยกลิ้น ซึ่งเกิดจากการเคลื่อนไหวที่อย่างรวดเร็ว แรงสปริงลิ้นเข้าที่แล้วสปิงลิ้นจะต้องอยู่ในสภาพที่ถูกบีบหรือกดตลอดเวลา

            ก้านส่งลิ้น จำทำด้านล่างของก้านเป็นแบบหัวบานเรียบๆ เป็นรูปดอกเห็ดวางอยู่บนลูกเบี้ยว ปลายด้านบนจะรับกับปลายกระเดื่องกดลิ้น มักทำข้างในกลวงเพื่อลดน้ำหนักแต่ต้องมีความแข็งแรงพอที่จะใช้งานได่ดี

            เพลาลูกเบี้ยว ทำหน้าที่บังคับลิ้นไอดีและลิ้นไอเสีย ทำงานสัมพันธ์กับเพลาข้อเหวี่ยง โดยจะมีเฟื่องปรกอบติดอยู่กับเพลาลูกเบี้ยว ซึ่งจะต้องสร้างอย่างประณีต มีความคงทนต่อการสึกหรอ เพื่อให้การส่งแรงขับสม่ำเสมอ และมีเสียงดังไม่มาก ฟันเฟืองที่ใช้จะเป็นแบบฟันเฉียง (Helical  Teeth)  บางแบบอาจใช้ไฟเบอร์ ทำเฟืองหัวเบี้ยว ทำให้ไม่มีเสียงดัง เมื่อสึกหรอก็เปลี่ยนเฉพาะเฟืองไฟเบอร์เท่านั้น แต่บางแบบก็ใช้โซ่เป็นตัวถ่ายกำลัง ซึ่งจำเป็นต้องมีอุปกรณ์ปรับโซ่ติดตั้งอยู่ด้วย นอกจากเพลาลูกเบี้ยวใช้สำหรับบังคับลิ้นไอดีและลิ้นไอเสียแล้ว อาจมีลูกเบี้ยวสำหรับหัวฉีด,ปั๊มน้ำมันเชื้อเพลิง และลิ้นลมสตาร์ทด้วย เครื่องยนต์บางแบบมีเพลาลูกเบี้ยว 2 เพลา เพลาหนึ่งสำหรับลิ้นไอดีและลิ้นไอเสีย ส่วนอีกเพลาหนึ่งสำหรับปั๊มน้ำมันเชื้อเพลิงและอุปกรณ์ช่วยอื่น ๆ

            14. หัวฉีดน้ำมันเชื้อเพลิง (Injector Or Fuel Nozzle) ทำหน้าที่ฉีดน้ำมันเชื้อเพลิงให้แตกตัวเป็นฝอยละอองเข้าไปในห้องเผาไหม้ ให้ถูกต้องตามจังหวะการทำงานของเครื่องยนต์ ตรงตามเวลาที่เหมาะสม การออกแบบหัวฉีดเป็นงานที่ซับซ้อน และยุ่งยากเพราะจะต้องคำนึงถึงฝาสูบ ห้องเผาไหม้ และตำแหน่งที่ติดตั้งหัวฉีด ซึ่งมีผลต่อการหมุนวนของอากาศอัดด้วย การออกแบบเครื่องยนต์และชนิด จะต้องใช้หัวฉีดแบบพิเศษโดยเฉพาะ ปัจจุบันจึงมีหัวฉีดแตกต่างกันหลายแบบ และคุณสมบัติในการฉีดกระจายเชื้อเพลิงแตกต่างกันด้วย หัวฉีดแบ่งออกเป็นแบบใหญ่ๆ ได้ 2 ชนิด คือ

            -  หัวฉีดแบบเปิด (Open Type) แบบนี้ไม่มีลิ้นปิดกั้นการไหลของน้ำมันเชื้อเพลิงจากหัวฉีด การจ่ายเชื้อเพลิงทั้งหมดถูกควบคุม โดยปั๊มน้ำมันเชื้อเพลิง แต่จะมีลิ้นกับกลับติดตั้งไว้ เพื่อป้องกันก๊าซไอเสียจากห้องเผาไหม้เข้าไปในหัวฉีด ข้อดีของหัวฉีดแบบนี้ คือ ไม่ทำให้เกิดการอุดตันได้ง่าย เพราะการฉีดเชื้อเพลิงแรงดันสูงจะทำให้หัวฉีดสะอาดอยู่เสมอ ส่วนข้อเสียคือ ฝอยละอองของเชื้อเพลิงไม่ค่อยละเอียด ทำให้มีควันไอเสียมากและน้ำมันเชื้อเพลิงจะเกิดการหยด หรือรั่วออกจากหัวฉีดได้ง่าย จึงไม่ค่อยนิยมใช้กันมากนัก มักใช้กับเครื่องยนต์รุ่นเก่า

-  หัวฉีดแบบปิด (Closed Type) แบบนี้จะมีลิ้นหรือเข็มโดยใช้สปริงดันลิ้นไว้ให้ปิด ลิ้นนี้จะอยู่ใกล้กับรูเล็กๆ ที่ปลายหัวฉีด ซึ่งเป็นรูให้น้ำมันเชื้อเพลิง ถูกฉีดออกไปยังห้องเผาไหม้ เมื่อถึงตำแหน่งหรือจังหวะในหารฉีดน้ำมันเชื้อเพลิง กลไกก็จะยกให้เข็มนมหนู (Needle Valve) พ้นจากบ่า น้ำมันก็จะฉีดเข้าไปในห้องเผาไหม้ ข้อดีของเข็มหัวฉีดแบบนี้คือ น้ำมันเชื้อเพลิงจะไม่รั่วออกจากหัวฉีดได้ง่าย ซึ่งอาจเป็นต้นเหตุให้เกิดการชิงจุด (Pre-ignition) ได้ ถ้าน้ำมันเชื้อเพลิงมีหยดตกค้างอยู่ที่ปลายหัวฉีด จะทำให้เกิดเขม่าจับสะสม รวมตัวกันภายหลังการเผาไหม้ และยังทำให้เกิดการสิ้นเปลืองเชื้อเพลิงด้วย สำหรับข้อเสียของหัวฉีดแบบนี้คือ อาจดเกิดการอุดตันที่ลิ้นได้ง่ายเพราะมีสิ่งสกปรกปนอยู่ในน้ำมันเชื้อเพลิง แต่สามารถป้องกันได้โดยการกรองน้ำมันเชื้อเพลิงให้สะอาด

 

2. หลักการทำงานของเครื่องยนต์ 4 จังหวะ

            หลักการที่สำคัญของเครื่องยนต์ดีเซลคือ การเปลี่ยนพลังงานเคมีของเชื้อเพลิงให้เป็นพลังงานกล โดยไม่ใช้การจุดระเบิดด้วยประกายไฟฟ้า แต่ใช้อากาศที่ถูกอัดตัวจนมีกำลังดันสูง โดยการเคลื่อนที่ของลูกสูบภายในกระบอกสูบ ซึ่งเป็นผลทำให้อุณหภูมิสูงมากประมาณ 1,000 องศาฟาเร็นไฮท์ เมื่อฉีดน้ำมันเชื้อเพลิงเข้าไป น้ำมันจะติดไฟเกิดการเผาไหม้ได้เอง

            การทำงานของเครื่องยนต์ 4 จังหวะ หมายถึง การทำงานของลูกสูบเลื่อนขึ้นลงรวม 4 ครั้ง หรือเพลาข้อเหวี่ยงหมุนไปครบ 2 รอบ หรือ 720 องศา เป็นการทำงานครบกลวัตร (Cycle) ในการเลื่อนขึ้นลงของลูกสูบแต่ละครั้งจะผ่านศูนย์ตายบบนและศนย์ตายล่าง คำว่า “ศูนย์ตาย” หมายถึง ตำแหน่งที่ลูกสูบเลื่อนในกระบอกสูบขึ้นไปได้สูงที่สุดเรียกว่า จุดศูนย์ตายบน (Top Dead Center, T.D.C.) และถ้าเลื่อนลงมาต่ำสุด เรียกว่า ศูนย์ตายล่าง (Bottom Dead Center, B.D.C.) ที่ตำแหน่งทั้งสองนี้ จะไม่มีแรงบิดเกิดขึ้นที่เพลาข้อเหวี่ยง ลูกสูบไม่สามารถเคลื่อนที่ไปได้ด้วย กำลังของก๊าซ เพราะแนวแรงที่ส่งผ่านลูกสูบ มายังก้านสูบในระดับแนวเดียวกับเพลาข้อเหวี่ยง ซึ่งเป็นจุดหมุน

จังหวะการทำงานของเครื่องยนต์ทั้ง 4 จังหวะ มีดังนี้

            1. จังหวะดูด (Intake Or Suction Stroke) ดูรูป ก. ในจังหวะนี้จะเริ่มจากลูกสูบอยูที่ศูนย์ตายบน ลิ้นไอดีจะเปิด ส่วนลิ้นไอเสียปิด เพลาข้อเหวี่ยงถูกหมุนไปทางขวามือ ดึงก้านสูบซึ่งอยู่ติดกับลูกสูบ ทำให้ลูกสูบเลื่อนลง เกิดสูญญากาศขึ้นภายในกระบอกสูบ อากาศบริสุทธิ์ถูกดูดผ่านลิ้นไอดีเข้ามาในกระบอกสูบ จนกระทั่งลูกสูบเลื่อนลงมาอยู่ที่ศูนย์ตายล่าง ลิ้นไอดีจะปิด และลิ้นไอเสียก็ยังคงปิดอยู่เช่นเดิม จังหวะนี้เพลาข้อเหวี่ยงหมุนไป 180 องศา ลูกสูบเลื่อนจากศูนย์ตายบนถึงศูนย์ตายล่าง เป็นการสิ้นสุดจังหวะดูด

            2. จังหวะอัด (Compression Stroke) ดูรูป ข. เมื่อลูกสูบเคลื่อนที่ผ่านศูนย์ตายล่าง เริ่มต้อนจังหวะอัด ลูกสูบถูกผลักดันให้เลื่อนขึ้นโดยข้อเวี่ยงและก้านสูบอากาศที่อยู่ภายในกระบอกสูบไม่สามารถหนีออกจากกระบอกสูบได้ เพราะทั้งลิ้นไอดีและลิ้นไอเสียที่ยังปิดอยู่ อากาศจึงถูกอัดตัวมีกำลังดันและความร้อนสูงขึ้น โดยมีกำลังดันประมาณ 450-650 ปอนด์ต่อตารางนิ้ว และอุณหภูมิประมาณ 1,000 องศาฟาเร็นไฮท์ อากาศที่ถูกอัดตัวนี้จะมีปริมาณเหลือเพียง1/16 ของปริมาตรเดิมเท่านั้น อัตราส่วนการอัด (Compression Ratio) ของเครื่องยนต์ดีเซล โดยทั่วไป ประมาณ 14:1 ถึง 23:1 จังหวะนี้เพลาข้อเหวี่ยงหมุนต่อไปอีก 180 องศา ลูกสูบตายล่างถึงศูนย์ตายบน เป็นการสิ้นสุดจังหวะอัด

            3. จังหวะกำลังหรือจังหวะงาน (Power Stroke)  ดูรูปที่ ค. เมื่อลูกสูบเลื่อนขึ้นถึงศูนย์ตายบน เริ่มต้นจังหวะกำลัง หัวฉีดจะฉีดเชื้อเพลิงเป็นฝอยละอองเข้าไปในกระบอกสูบ ละอองเชื้อเพลิงจะผสมคลุกเคล้ากับอากาศอัดที่ร้อนภายในห้องเผาไหม้และเกิดการเผาไหม้อย่างรวดเร็ว กรรมวิธีการเผาไหม้ทำให้ส่วนผสมที่กำลังลุกไม้ร้อนยิ่งขึ้นเนื่องจากก๊าซที่ร้อนนี้เกิดขึ้นในพื้อนที่เล็กๆ ระหว่างด้านบนของลูกสูบกับด้านบนของกระบอกสูบกำลังดันของก๊าซจะเพิ่มขึ้นด้วย กำลังดันของก๊าซจะเพิ่มขึ้นด้วย กำลังดันนี้กระทำบนหัวลูกสูบ ผลักดันลูกสูบให้เลื่อนลงในจังหวะกำลัง กำลังดันจะส่งต่อผ่านก้านสูบไปยังเพลาข้อเหวี่ยง ทำให้เพลาข้อเหวี่ยงหมุนไป จังหวะนี้เพลาข้อเหวี่ยงหมุนต่อไปอีก 180 องศา ลูกสูบเลื่อนจากศูนย์ตายบนถึงศูนย์ตายล่าง เป็นสิ้นสุดจังหวะกำลัง

            4. จังหวะคาย (Exhaust Stroke) ดูรูปที่ ง. เริ่มต้นจังหวะคาย ลิ้นไอเสียจะถูกเปิดเมื่อใกล้จะสิ้นสุดจังหวะกำลังก๊าซที่เผาไหม้ให้กำลังงานแล้ว ในกระบอกสูบจะหนีออกไปนอกกระบอกสูบเป็นการคายไอเสียที่ปริมาตรคงที่ (Constant Volume) จนกรัทั่งกำลังดันของก๊าซลดลงเหลือสูงกว่ากำลังดันของบรรยากาศภายนอกเพียงเล็กน้อยเท่านั้น แต่ในกระบอกสูบยังคงมีก๊าซที่มีกำลังดันน้อยอยู่เต็ม ซึ่งจะต้องผลักดันออกจากกระบอกสูบให้หมด เพื่อเปิดทางให้อากาศบริสุทธิ์เข้ามาบรรจุได้เต็มที่ ดังนั้นการเลื่อนขึ้นของลูกสูบในจังหวะนี้จะผลักดันก๊าซที่ตกค้างนี้ ให้ออกไปจากกระบอกสูบ โดยผ่านทางลิ้นไอเสียซึ่งเปิดอยู่ เมื่อลูกสูบเลื่อนขึ้นจนถึงศูนย์ตายบน ก๊าซไอเสียจะถูกดันออกไปจากกระบอกสูบจนหมด การเลื่อนขึ้นของลูกสูบจากศูนย์ตายล่างถึงศูนย์ตายบน เพื่อขับไล่ก๊าซไอเสียนี้ เป็นการคายไอเสียที่กำลังดันคงที่ (Constant Pressure) จังหวะนี้เพลาข้อเหวี่ยงหมุนต่อไปอีก 180 องศา ลูกสูบเลื่อนจากศูนย์ตายล่างไปยังศูนย์ตายบน เป็นการสิ้นสุดการทำงานจังหวะคายไอเสีย

            การทำงาน ทั้ง 4 จังหวะนี้ครบ 1 กลวัตร เพลาข้อเหวี่ยงจะหมุนไปรวมทั้งสิ้น 720 องศา จากนั้นลิ้นไอดีจะเริ่มเปิดอีกครั้งหนึ่ง ลูกสูบจะเลื่อนจากศูนย์ตายบน ลงสู่ศูนย์ตายล่าง เป็นการเริ่มจังหวะดูดใหม่อีกครั้ง และการทำงานของเครื่องยนต์ดีเซล 4 จังหวะ ก็จะหมุนเวียนเป็นดังนี้เรื่อยไป

เวลาการปิด-เปิดลิ้น (Valve Timing)

            จากหลังการทำงานของเครื่องยนต์ 4 จังหวะที่กล่าวมาแล้ว จะเห็นว่าจังหวะการปิดเปิดลิ้นไอดี และไอเสีย จะอยู่ระหว่างช่วงต่อของจังหวะดูดและคายไอเสีย เมื่อลูกสูบเลื่อนมาอยู่ที่ตำแหน่งศูนย์ตายบนและศูนย์ตายล่างพอดี ซึ่งเป็นเพียงหลักการเท่านั้นในทางปฏิบบัติถ้าให้ลิ้นไอดีและลิ้นไอเสีย เปิด ปิด ที่ตำแหน่งดังกล่าว จะทำให้เครื่องไม่มีกำลัง เพราะอากาศเข้าสูบน้อย การเผาไหม้อากาศกับเชื้อเพลิงไม่หมดสมบูรณ์ รวมทั้งการกวาดล้างก๊าซเสียออกจากกระบอกสูบไม่หมด ดังนั้นการทำงานของเครื่องยนต์ในทางปฏิบัติจริง ควรไปเป็นดังตามในรูป คือ จะเห็นว่าลิ้นไอดี เริ่มต้นเปิดก่อนที่ลูกสูบจะเคลื่อนที่ถึงศูนย์ตายบน 20 องศา และจะปิดเมื่อลูกสูบผ่านศูนย์ตายล่าง 35 องศา เพื่อให้อากาศซึ่งมีความเร็วสูงที่กำลังไหลผ่านลิ้นไอดีเข้าไปในกระบอกสูบดำเนินต่อไป แม้ว่าลูกสูบเคลื่อนที่ขึ้นในจังหวะอัดแล้วก็ตาม การปิดของลิ้นไอดีตามที่กำหนดไว้นี้ เพื่อป้องกันอากาศในกระบอกสูบไม่ให้ไหลกลับเข้าไปในท่อไอดี ลูกสูบยังคงเคลื่อนขึ้นอัดอากาศต่อไปในจังหวะอัด

            การฉีดเชื้อเพลิงจะเริ่มต้นก่อนที่ลูกสูบจะขึ้นไปถูงศูนย์ตายบนเล็กน้อย โดยจะฉีดเชื้อเพลิงต่อไป จนกระทั่งลูกสูบเคลื่อนที่ผ่านศูนย์ตายบนเล็กน้อย มุดที่เริ่มต้นการฉีดเชื้อเพลิงก่อนศูนย์ตายบน เรียกว่า “มุมล่วงหน้าในการฉีดเชื้อเพลิง”  ซึ่งมีความจำเป็นเพราะความล่าช้าในการจุดให้ลุกไหม้ ด้วยมุมที่เพลาข้อเหวี่ยงหมุนไปประมาณ 30 องศา ซึ่งเป็นช่วงคาบเกี่ยวระหว่างจังหวะอัดและจังหวะกำลัง พลังงานที่ได้รับจากการเผาไหม้ของเชื้อเพลิงจะผลักดันลูกสูบทันที ในขณะที่ลูกสูบกำลังเลื่อนลงในจังหวะกำลัง

            เมื่อลูกสูบเลื่อนลงในจังหวะกำลัง จนถึงศูนย์ตายล่าง 35 องศา ลิ้นไอเสียจะเริ่มต้นเปิดให้ไอเสียไหลออกไปยังท่อไอเสีย ขณะนี้กำลังดันในกระบอกสูบจะลดต่ำลงทันที จนเกือบเท่ากำลังดันของบรรยากาศ ลูกสูบเคลื่อนผ่านศูนย์ตายล่าง และเริ่มเคลื่อนขึ้นในจังหวะคายไอเสีย ลูกสูบจะเลื่อนขึ้นผลักดันก๊าซไอเสียที่ตกค้างอยู่ภายในกระบอกสูบ ให้ออกไปทางไอลิ้นเสีย ลิ้นไอเสียจะปิดเมื่อลูกสูบเคลื่อนผ่านศูนย์ตายบนไปแล้ว 20 องศา เพื่อปล่อยให้ก๊าซไอเสีย ที่ยังมีความเร็วสูงอยู่ไหลออกจากกระบอกสูบต่อไปเป็นการกำจัดก๊าซไอเสียให้ออกจากกระบอกสูบได้มากที่สุด

            ดังนั้นจะเห็นว่ามีการเปิดลิ้นไอดี และลิ้นไอเสียพร้อมกันในระหว่างช่วงจังหวะดูดและคายไอเสีย โดยที่เพลาข้อเหวี่ยงหมุนไปถึง 40 องศา ซึ่งเป็นการช่วยการไหลของอากาศบริสุทธิ์ ที่เข้าไปในกระบอกสูบ และช่วยการไหลของก๊าซไอเสียที่ออกจากกระบอกสูบโดยไม่ทำให้อากาศบริสุทธิ์ และก๊าซไอเสียเข้าผสมกัน

            ตามรูป เป็นเพียงตัวอย่างแสดงมุมของการเปิด-ปิดลิ้นของเครื่องยนต์แบบหนึ่งเท่านั้น โดยในจังหวะดูดเพลาข้อเหวี่ยงจะหมุนไป 235 องศา จังหวะอัด 145 องศา จังหวะกำลัง 145 องศา และจังหวะคาย 235 องศา ถ้าเครื่องยนต์ต่างชนิดกันหรือต่างรุ่นกัน มุมต่างๆ เหล่านี้ย่อมแตกต่างกันด้วย ความเร็วของเครื่องยนต์มีผลต่อเวลาการปิด-เปิดลิ้น และเวลาของการฉีดเชื้อเพลิงล่วงหน้า ถ้าเครื่องยนต์ยิ่งมีความเร็วสูง มุมก่อนถึงศูนย์ตายล่างและหลังศูนย์ตายล่างจะต้องกว้างขึ้น

 

3. ข้อดีของเครื่องยนต์ดีเซล เมื่อเปรียบเทียบกับเครื่องยนต์ก๊าซโซลีน

ข้อดีของเครื่องยนต์ดีเซล

1.   น้ำมันเชื้อเพลิงมีราคาถูกกว่าประมาณ 15-20 เปอร์เซ็นต์

2.   ประหยัดน้ำมันเชื้อเพลิง สิ้นเปลืองเชื้อเพลิงน้อยกว่า เมื่อจำนวนชั่วโมงการทำงานเท่ากัน และแรงม้าเท่ากัน

3.   ไม่มีระบบจุดระเบิดด้วยไฟฟ้า ซึ่งยุ่งยากและมีเหตุขัดข้องเสมอ

4.   มีกำลังมาก คุณลักษณะของแรงบิดดีกว่า เนื่องจากมีอัตราส่วนอัดสูง

5.   น้ำมันเชื้อเพลิงมีจุดวาบไฟสูง มีความปลอดภัยในการเก็บอันตรายจาการเกิดไฟไหม้น้อยลง

6.   การชิงจุด (Pre-ignition) มีโอกาสเกิดขึ้นน้อยมาก หรือไม่เกิดขึ้นเลย

7.   ไม่ต้องเสียเวลาในการอุ่นเครื่องนาน

8.   ระบบการทำงานไม่ยุ่งยาก ค่าใช้จ่ายในการบบำรุงรักษาลดลง เพราะช่วงเวลาในการบำรุงรักษาแต่ละครั้งนานขึ้น เนื่องจากระบบฉีดเชื้อเพลิงมีปัญหาเล็กน้อย และอุปกรณ์ต่าง ๆ มีอายะการใช้งานนาน

9.   ไม่มีปัญหาเกี่ยวกับโหลด, ความเร็ว, ความชื้นและปัญหาอื่น ซึ่งเป็นปัญหาของคาร์บูเรเตอร์ ปริมาณเชื้อเพลิงที่ฉีดเข้ากระบอกสูบ กำหนดปริมาณได้เที่ยงตรงโดยปั๊มฉีดเชื้อเพลิง และมีเครื่องควบคุมความเร็ว (Governor) ทำให้สามารถควบคุมได้ราบเรียบตลอดทุกช่วงความเร็ว

10. ไม่มีปัญหาการรบกวนคลื่นวิทยุจุดระเบิดด้วยไฟฟ้า

11. มีประสิทธิภาพสม่ำเสมอ ทุกขนาดของโหลด

12. ความร้อนจากการเผาไหม้ถ่ายเทให้ผนังเสื้อสูบน้อยกว่า ดังนั้นระบบระบายความร้อนจึงมีขนาดเล็กกว่า

ข้อเสียของเครื่องยนต์ดีเซล

1.   เครื่องยนต์มีราคาแพง เพราะจะต้องสร้างให้มีความแข็งแรง เนื่องจากมีอัตราส่วนอัดสูง

2.   มีน้ำหนักมากกว่า เมื่อมีแรงม้าเท่ากัน เพราะชิ้นส่วนต่างๆ ต้องได้รับการออกแบบให้รับแรงดันที่สูงกว่า จึงทำให้น้ำหนักของชิ้นส่วนต่างๆ มากขึ้น

3.   ขณะทำงานเครื่องยนต์มีการสั่นสะเทือน และมีเสียงดังมาก

4.   เมื่อเกิดการสึกหรอ หรือเครื่องยนต์เก่าที่บำรุงรักษาไม่ดี จะติดเครื่องยากเกิดควันดำ และก๊าซไอเสียมีเกิดเหม็นมาก เป็นปัญหาทางด้านมลพิษอย่างหนึ่ง

5.   ระบบน้ำมันเชื้อเพลิงมีราคาแพง ต้องบำรุงรักษาปั๊มน้ำมันเชื้อเพลิง และหัวฉีด

6.   สตาร์ทเครื่องยาก โดยเฉพาะเมื่ออากาศเย็นจัด เพราะต้องใช้ความร้อนจาอากาศอัดในกระบอกสูบเป็นตัวจุดระเบิด และน้ำมันเชื้อเพลิงมีจุดติดไฟสูง

7.   กำลังการผลิตมีขีดจำกัด ต้องใช้พื้นที่เพิ่มมากขึ้น

8.   ค่าใช้จ่ายในระบบหล่อลื่น ราคาแพง

 

4. การแบ่งเครื่องยนต์ดีเซล

            เครื่องยนต์ดีเซลจัดแบ่งตามลักษณะต่าง ๆ ดังนี้

4.1. กลวัตรการทำงาน  แบ่งออกเป็น 2 ชนิดคือ เครื่องยนต์ 2 จังหวะ และเครื่องยนต์ 4 จังหวะ

4.2.   การทำงานของลูกสูบ แบ่งออกเป็น 3 แบบ คือ

-  แบบทำงานทางเดียว หัวลูกสูบทำหน้าที่อัดอากาศและนับแรงดันจากการขยายดัวของก๊าซในจังหวะกำลัง กำลังงานที่จะได้เป็นจังหวะที่ลูกสูบเลื่อนลงจากศูนย์ตายบนเท่านั้น

-   แบบทำงานสองทาง จะมีห้องเผาไหม้ 2 ห้อง ทั้งด้านบนและด้านล่าง ด้านล่างของลูกสูบถูกปิดตัน เพื่อทำหน้าที่อัดอากาศและรับแรงระเบิดในกระบอกสูบด้านล่างปลายก้อานลูบด้านล่างจะต่อกับหัวต่อ (Cross Head) มีรางเลื่อนทำหน้าที่บังคับให้ก้านสูบเลื่อนกลับไปมาตรงๆ เท่านั้น จากหัวต่อจะมีก้านต่อมายังเพลาข้อเหวี่ยง

-   แบบลูกสูบทำงานตรงข้าม แต่ละกระบอกสูบจะมีลูกสูบ 2 ลูก เคลื่อนที่มนทิศทางตรงข้าม ห้องเผาไหม้ของเครื่องยนต์แบบนี้อยู่ตรงกลางของกระบอกสูบ ระหว่างลูกสูบทั้งสอง ลูกสูบแค่ละลูกทำงานแบบลูกสูบทำงานทางเดียว คือ แรงดันของก๊าซจะกระทำต่อหัวลูกสูบทั้งสองเท่านั้น

4.3.   การยึดต่อของลูกสูบ แบ่งเป็น 2 แบบ คือ

- แบบที่ใช้ต่อโดยตรงกับก้านสูบ สลักลูกสูบจะยึดลูกสูบให้ติดปลายด้านเล็กของก้านสูบ ส่วนปลายด้านใหญ่จะยึดกับเพลาข้อเหวี่ยง

-  แบบที่ใช้หัวต่อ ลูกสูบจะยึดติดกับปลายก้านสูบเช่นเดียวกัน แต่ปลายด้านล่างจะส่งต่อ ซึ่งมีรางบังคับให้หัวต่อเลื่อนกลับไป-มาได้ตรงๆ มีก้านต่ออีกอันหนึ่ง ต่ออยู่ระหว่างหัวต่อกับเพลาข้อเหวี่ยง ก้านต่อจะทำหน้าที่รับ-ส่งแรงระหว่างก้านสูบกับเพลาข้อเหวี่ยง เครื่องยนต์แบบนี้เป็นเครื่องขนาดใหญ่ความเร็วรอบต่ำ

4.4.   การจัดวางกระบอกสูบ แบ่งเป็น 4 แบบ คือ

-  แบบแถวเรียงเดี่ยว เป็นการจัดวางที่ง่ายที่สุดโดยทุกสูบจะอยู่ในลักษณะตั้งเรียงแถวเดียว

- แบบสูบตัววี ใช้กับเครื่องยนต์ที่มีสูบมากๆ ตั้งแต่ 8 สูบขึ้นไป เพราะจะต้องสร้างให้เพลาข้อเหวี่ยงมีความแข็งแรงเพิ่มขึ้น และเป็นการประหยัดพื้นที่ด้วย การจัดวางแบบนี้จะมี 2 แถว โดยมีมุมระหว่างแถวประมาณ 45-75 องศา

แบบสูงวางราบ ลักษณะการจัดวางคล้ายแบบสูบตัววีคือ สูบมีสองแถว แต่มุมระหว่างแถวกว้างแถวเป็น 180 องศา การจัดวางแบบนี้เพื่อลดความสูงของเครื่องยนต์เรียกอีกชื่อหนึ่งว่า แบบกระบอกสูบอยู่ตรงข้าม

แบบสูบดาว ลักษณะการจัดวางแบบนี้ใช้เนื้อที่ในทางตั้งน้อย ปลายกระบอกสูบทุกสูบชี้ไปที่จุดศูนย์กลางของวงกลม ก้านสูบทุกก้านจับอยู่ที่ข้อเหวี่ยงอันเดียวกัน  ซึ่งจะหมุนรอบจุดศูนย์กลางของวงกลม

4.5.   การฉีดน้ำมันเชื้อเพลิง แบ่งเป็น 2 แบบ คือ

-   แบบฉีดด้วยอากาศอัด น้ำมันเชื้อเพลิงจะถูกฉีดเข้าไปในกระบอกกสูบด้วยอากาศที่มีกำลังดันสูงมาก

- แบบฉีดด้วยกำลังดันของน้ำมันเอง โดยมีปั๊มทำหน้าที่อัดน้ำมันจนกระทั่งมีกำลังดันสูงพอที่จะฉีดมันออกเป็นฝอยละอองผ่านหัวฉีดเข้าไปในกระบอกสูบ

4.6.   ความเร็วรอบของเครื่องยนต์ แบ่งเป็น 3 ระดับ คือ

-     ความเร็วต่ำ ไม่เกิน 350 รอบ/นาที

-     ความเร็วปานกลาง 350-1,200 รอบ/นาที ใช้เป็นเครื่องต้นกำลังในโรงงานอุตสาหกรรม หรือใช้ขับเครื่องกำเนิดไฟฟ้า

-     ความเร็วสูง มากกว่า 1,200 รอบ/นาที ขึ้นไป ส่วนมากใช้กับรถยนต์

 

5. วิธีการสตาร์ทเครื่องยนต์ดีเซล

            การสตาร์ทเครื่องยนต์คือ การทำให้เพลาข้อเหวี่ยงของเครื่องยนต์หมุน โดยรับกำลังจากภายนอก ทำให้ลูกสูบเลื่อนขึ้นอัดอากาศในกระบอกสูบ ให้มีกำลังดัน และอุณหภูมิสูง จนสามารถทำให้น้ำมันเชื้อเพลิงที่ฉีดเข้ากระบอกสูบเกิดการเผาไหม้ได้องค์ประกอบที่จะทำให้เครื่องยนต์ติดได้

- ความเร็วรอบสูง ความเร็วที่ใช้ในการสตาร์ทเครื่องยนต์จะอยู่ระหว่าง 200-300 รอบ/นาที ถ้าเครื่องยนต์หมุนช้า อากาศที่ถูกอัดจะรั่วผ่านทางลิ้นไอดี ลิ้นไอเสีย และแหวนลูกสูบ ทำให้กำลังอัด และอุณหภูมิต่ำ จนไม่สามารถทำให้เกิดการเผาไหม้ได้ นอกจากนั้นความร้อนยังถูกถ่ายเทให้กับผนังกระบอกสูบได้ง่ายด้วย

            - อัตราส่วนอัดสูง กำลังดันจากการอัดตัวที่ใช้ในการสตาร์ทเครื่องยนต์ประมาณ 400 ปอนด์/ตารางนิ้ว ถ้าอัตราส่วนอัดต่ำอุณหภูมิ และกำลังดันของอากาศภายในกระบอกสูบไม่สูงพอ ที่จะทำให้น้ำมันเชื้อเพลิงเกิดการเผาไหม้ได้ เหตุที่ทำให้อัตราส่วนอัดต่ำ ได้แก่ การสึกหรอของลิ้น การปิดของลิ้นไอดีช้ากว่ากำหนด เนื่องจากตั้งจังหวะลิ้นผิด เป็นต้น

            วิธีการสตาร์ทระยนต์ดีเซล มีหลายวิธีดังต่อนี้

1.     ใช้มือหมุน ใช้กับเครื่องยนต์ขนาดเล็ก เช่น เครื่องฉุดระหัดเป็นแบบง่าย ๆ

อาจใช้เชือกพันรอบล้อหมุน แล้วดึงหรือกระตุกให้เพลาหมุน

2.   ใช้ไฟฟ้า ใช้ได้ทั้งกับเครื่องยนต์ขนาดเล็ก และขนาดใหญ่ มอเตอร์ที่ใช้ขับมี

กำลังประมาณ 10-20 เปอร์เซ็นต์ของกำลังที่จ่ายออกจ่ายเครื่องยนต์ เป็นมอเตอร์ไฟฟ้ากระแสตรงชนิดซีรีส (Series) สามารถทำงานเกินกำลัง (Over Load)ได้ในช่วงระยะเวลาสั้นๆระบบสตาร์ทบางแบบมีสวิทช์แม่เหล็กสำหรับตัดกระแสออกจากวงจรหลังจากสตาร์ทไปแล้ว15วินาทีเพื่อป้องกันไม่ให้มอเตอร์ร้อนจัดเกินไปการสตาร์ทไม่ความเปิดสวิทช์นานติดต่อกันเกินกว่า 30 วินาที ถ้าเป็นเครื่องยนต์ดีเซลที่ขับเครื่องกำเนิดไฟฟ้ากระแสตรง เช่น ในรถไฟ ตัวเครื่องกำเนิดไฟฟ้า อาจใช้เป็นมอเตอร์ได้ โดยใช้ไฟจากแบตเตอรี่ที่มีความจุมาก ๆ

            แบตเตอรี่ที่ใช้กับมอเตอร์สตาร์ท โดยทั่วไปถ้าเป็นเครื่องยนต์ขนาดเล็กใช้ 12-16 โวลท์ ถ้าเป็นเครื่องยนต์ขนาดใหญ่ใช้ 24-32 โวลท์ แบตเตอรรี่จะได้รับการประจุจากเครื่องกำเนิดไฟฟ้า สวิทช์และสายต่อจะต้องมีขนดใหญ่ และสั้นเพื่อลดความต้านทานในสาย เพราะใช้แรงเคลื่อนที่ไฟฟ้าต่ำ แต่กระแสไฟฟ้าสูงมาก สวิทช์ที่ใช้ควรเป็นแบบทำงานโดยอำนาจแม่เหล็ก ซึ่งสามารถควบคุมได้ในระยะทางไกลๆ

            ข้อเสียของการสตาร์ทด้วยวิธีนี้คือ ประสิทธิภาพของแบตเตอรี่จะต่ำลงอย่างรวดเร็วเมื่ออุณหภูมิต่ำลง ความฝืดภายในเครื่องจะสูงขึ้นด้วย เพราะความหนืดของน้ำมันหล่อลื่นเพิ่มขึ้น ทำให้การหมุนเครื่องยนต์ต้องใช้แรงบิดเพิ่มขึ้น และข้อเสียอีกประการหนึ่งคือ อันตรายจากสะเก็ดไฟที่เกิดจากการสปาร์คระหว่างแปรงถ่านกับคอมมิวเตเตอร์ ซึ่งเป็นปัญหาในงานเกี่ยวกับน้ำมัน,การกลั่นน้ำมัน ,แก๊ส,วัตถุเคมี เป็นต้น

3.   ใช้ลมอัดหรืออากาศอัด ใช้กับเครื่องยนต์ขนาดใหญ่ มีข้อดีคือ อากาศอัดมี

ราคาถูกและสะดวกในการเก็บรักษา ทำได้โดยอัดอากาศให้มีกำลังดันสูง แล้วเก็บไว้ในถัง เมื่อต้องการสตาร์ท ก็ปล่อยอากาศที่อัดไว้ ผ่านลิ้นสตาร์ทเข้าไปในกระบอกสูบอากาศอัดที่เข้าไปนี้จะเกิดการขยายตัว ผลักดันให้ลูกสูบเลื่อนลง ทำให้เพลาข้อเหวี่ยงหมุน หลังจากสตาร์ทแล้ว จะอัดอากาศเก็บไว้ตามเดิม เพื่อรอการสตาร์ทครั้งต่อไป การอัดอากาศครั้งหลังนี้ได้รับกำลังจากเครื่องยนต์โดยตรง

            กำลังดันลงที่ใช้สตาร์ทประมาณ 250-600 ปอนด์/ตารางนิ้ว โดยเปิดผ่านลิ้นสตาร์ทที่อยู่บนฝาสูบ ลิ้นสตาร์ทจะเปิดพอดีในจังหวะกำลังในขณะที่ลูกสูบเคลื่อนที่ผ่านศูนย์ตายบนเล็กน้อย เครื่องยนต์ที่มีน้อยกว่า 10 สูบ จะต้องมีลิ้นสตาร์ททุกสูบ แต่ถ้ามี 12-16สูบ จะมีลิ้นสตาร์ทเพียงครึ่งหนึ่งของจำนวนสูบเท่านั้น

4.   ใช้ไฮดรอกลิก  การเริ่มสตาร์ทด้วยวิธีนี้คือ ใช้มือปั๊มให้น้ำมันไฮดรอกลิกมี

กำลังดันเกิดขึ้น แล้วส่งเข้าไปเก็บไว้ที่หม้อน้ำมันกำลังดันสูง (Accumulator) กำลังดันที่ใช้ประมาณ 1,500-2,500 ปอนด์/ตารางนิ้ว เมื่อกดคสตาร์ท ลิ้นควบคุมจะเปิดให้น้ำมันไฮดรอกลิกกำลังดันสูงไหลไปยังมอเตอร์สตาร์ทไฮดรอกลิก ขับเครื่องยนต์ให้หมุนเพื่อทำการสตาร์ท เมื่อคันสตาร์ทถูปล่อย สปริงจะดันเฟืองขับให้ปลดออกจากการขบกันและปิดลิ้นควบคุมทำให้น้ำมันไฮดรอกลิกจากหม้อน้ำกำลังดันหยุดไหล

5.   ใช้มอเตอร์ลมเป้นมอเตอร์สตาร์ทอีกชนิดหนึ่งคล้ายแบบไฮดรอกลิก แต่ใช้กำลัง

ดันลมเป็นตัวขับดันให้มอเตอร์หมุน เพื่อหลีกเลี่ยงปัยหาต่าง ๆ ทางไฟฟ้า เช่น กระประจุแบตเตอรี่ กำบำรุงรักษา อายุการใช้งาน มอเตอร์ที่ใช้ลมจะเสียยากกว่ามอเตอร์ไฟฟ้า กำลังดันลมที่ใช้ประมาณ 75-150 ปอนด์/ตารางนิ้ว

6.   ใช้เครื่องยนต์ก๊าซโซลีน เครื่องยนต์ก๊าซโซลีนขนาดเล็กสามารถหมุนเครื่อง

ยนต์ดีเซลให้มีความเร็วสูงกว่าใช้มอเตอร์ไฟฟ้า ติดตั้งไว้ด้านข้างของเครื่องยนต์ดีเซลโดยตรง ขับเครื่องยนต์ดีเซล โดยผ่านคลัทช์ กระปุกเกียร์ และเฟืองขับ ข้อดีของวิธีนี้คือ นอกจากจะทำหน้าที่สตาร์ทแล้วยังทำหน้าที่อุ่นเครื่องยนต์ดีเซลให้ร้อนก่อสตาร์ท โดยเอาไอเสียของเครื่องยนต์ก๊าซโซลีนไปอุ่นที่ท่อไอดีของเครื่องยนต์ดีเซล ทำให้สภาพของการสตาร์ทดีขึ้น

7.   ใช้สตาร์ทเป็นแบบก๊าซโซลีนแลั้วทำงานเป็นแบบดีเซล ใช้กับเครื่องยนต์

ขนาดใหญ่ ห้องเผาไหม้มี 2 ตอน ระหว่างห้องเผาไหม้จะมีลิ้นสตาร์ท ปิด-เปิดด้วยคันบังคับ เมื่อต้องการสตาร์ทเครื่องยนต์ ก็บิดคันบังคับไปในตำแหน่งสตาร์ทลิ้นจะเปิดออกเป็นห้องเผาไหม้ห้องเดียวกัน ปริมาตรห้องเผาไหม้จะกว้างขึ้น มีอัตราส่วนอัดอากาศเท่ากับเครื่องยนต์ก๊าซโซลีน ประมาณ 6-10 : 1 ขณะเดียวกัน คันบังคับก็ส่งอาการต่อไปยังคาร์บูเรเตอร์ และต่อระบบจุดระเบิดเข้ากับหัวเทียนสภาวะต่างๆ เป็นเหมือนเครื่องยนต์ก๊าซโซลีนทุกประการ ระบบต่างๆ ทางเครื่องยนต์ดีเซลถูกตัดออก เมื่อทำการสตาร์ทเครื่องยนต์จะหมุนติดในลักษณะของเครื่องยนต์ก๊าซโซลีนอยู่ครู่หนึ่งก่อน เมื่อเครื่องยนต์ได้รับการอุ่นเครื่องเพียงพอแล้ว จึงบิดคันบังคับไปอยู่ในตำแหน่งรัน (Run) ทำให้ห้องเผาไหม้มีปริมาณเล็กลง มีอัตราส่วนอัดอากาศเท่ากับเครื่องยนต์ดีเซล ขณะนี้ระบบต่างๆ ของเครื่องยนต์ ก๊าซโซลีนจะถูกตัดออก และต่อระบบการทำงานของเครื่องยนต์ดีเซลให้ทำงาน เครื่องยนต์ก็จะทำงานในลักษณะของเครื่องยนต์ดีเซลต่อไป

 

6. ระบบระบายความร้อน

                ความร้อนที่เกิดจาการเผาไหม้ของเชื้อเพลิงในกระบอกสูบอุณหภูมิสูงประมาณ 800-1200.ฟาเร็นไฮท์ความร้อนที่เกิดขึ้นนี้จะถ่ายไปยังผนังกระบอกสูบทำให้อุณหภูมิของผนังกระบอกสูบเพิ่มขึ้นถ้าลูกสูบไม่ได้ระบายความร้อนให้อุณหภูมิของผนังกระ

บอกสูบจะสูงเกินขีดจำกัดน้ำมันหล่อลื่นลูกสูบจะระเหยอย่างรวดเร็วทำให้ลูกสูบและกระบอกสูบชำรุดขณะเดียวกันชิ้นส่วนต่างๆของเครื่องยนต์เช่นฝาสูบลิ้นไอดีไอเสีย ก็จะมีอุณหภูมิที่สูงขึ้นทำให้เกิดความเค้นมากเกินไปชิ่นส่วนเหล่านี้จะเกิดการแตกร้าวได้

                ระบบระบายความร้อนหรือหารหล่อเย็น เป็ฯสิ่งจำเป็นสำหรับเครื่องยนต์อย่างยิ่งโดยจะต้องควบคุมอุณหภูมิของเครื่องให้คงที่ตลอดเวลา ถ้าอุณหภูมิสูงหือต่ำเกินไปจะเป็นผลเสียต่อเครื่องยนต์ วิธีการพาความร้อนออกไปสู่บรรยากาศ มีอยู่ 2 วิธีคือ การระบายความร้อนด้วยอากาศ และการระบายความร้อนด้วยน้ำ น้ำมันหล่อลื่นที่ไหลหมุนเวียนผ่านเครื่องยนต์ จะช่วยระบายความร้อนของเครื่องยนต์ด้วย การติดตั้งเครื่องยนต์บางแบบ จะจัดให้มีการหล่อเย็นน้ำมันหล่อลื่นไว้ด้วย เพื่อช่วยลดอุณหภูมิของน้ำมันหล่อลื่นให้อยู่ในขีดจำกัดตามที่กำหนดไว้

การระบายความร้อนด้วยน้ำ มีตัวประกอบหลายอย่างที่จะต้องนำมาพิจารณาในการออกแบบระบายความร้อน ช่องทางน้ำในเสื้อสูบ จะต้องมีขนาดเพียงพอที่จะให้น้ำไหลเวียนได้มากพอ จะต้องอยู่ในตำแหน่งที่เหมาะสมเพื่อป้องกันไม่ให้พื้นที่ส่วนหนึ่งส่วนใดของเครือ่งยนต์ร้อนจัด ต้องมีปริมาณน้ำเพียงพอที่จะทำการระบายความร้อน หลักการที่สำคัญในการออกแบบระบายความร้อนด้วยน้ำ คือ

                -  จะต้องมีระบบการไหลเวียนที่เหมาะสม ไม่มากหรือน้อยเกินไป น้ำที่ไหลเวียนมากเกินไป จะทำให้อุณหภูมิของน้ำต่ำ ซึ่งไม่เป็นผลดี นอกขากนี้จะสิ้นเปลืองเชื้อเพลิง แล้วยังทำให้กำลังที่ได้ลดต่ำลงอีกด้วย แต่ถ้าไหลเวียนน้อยก็จะไม่สามารถระบายความร้อนออกมาได้ตามต้องการ เครื่องยนต์จะร้อนจัดการไหลเวียนของน้ำภายในเครื่องมี 2 แบบคือ แบบธรรมชาติ และแบบใช้ปั๊มช่วยให้เกิดการไหลเวียน ซึ่งเป็นเครื่องยนต์ขนดใหญ่

                - น้ำที่ใช้จะต้องไม่ทำให้เกิดตะกอน หรือสนิมในเสื้อสูบเครื่องยนต์ และเครื่องส่งถ่ายความร้อน

          -  ปริมาณน้ำจะต้องเพียงพอสำหรับจ่ายใช้ในระบบ จำนวนน้ำจริงๆ ที่ต้องการเพื่อระบายความร้อนผ่านออกจากผนังกระบอกสูบ ขึ้นอยู่กับขนดหรือจำนวนแรงม้าของเครื่องยนต์ และอุณหภูมิของน้ำหล่อเย็น

                -  อุณหภูมิของน้ำในเสื้อสูบจะต้องอยู่ระหว่าง 165-180ฟาเร็นไฮท์ จะต้องรักษาอุณหภูมิไม่ให้สูงเกินกว่าค่านี้หากอุณหภูมิสูงขึ้นจะเป็นเหตุให้เกิดความเค้นขึ้นในเนื้อโลหะซึ่งเป็นส่วนประกอบของเครื่องยนต์โดยเฉพาะที่บริเวณ กระบอกสูบและฝาสูบ              

                ระบบระบายความร้อนด้วยน้ำแบ่งออกเป็น 2 แบบคือ

                1.  ระบบเปิดจะใช้ปั๊มดูดน้ำจากแหล่งน้ำส่งผ่านเข้าไปยังช่องทางน้ำในเสื้อสูบเพื่อระบายความร้อน แล้วปล่อยกลับมาที่เดิม เช่นแม่น้ำลำคลอง หรืออาจส่งกลับไปยังชั้นที่ทำเป็นหอสูง (Cooling tower) และให้น้ำไหลตกลงมาเป็นยการระบายความร้อนหลังจาหที่น้ำเย็นแล้วก็ปั๊มส่งกลับเข้าไปในเครื่องยนต์อีกข้อดีของระบบนี้คือ สะดวกและลงทุนน้อย ข้อเสียคือ การควบคุมอุณหภูมิของเครื่องยนต์ให้คงที่ทำได้ยาก และเกิดตกตะกอนในช่องทางน้ำของเสื้อสูบ เป็นผลเสียต่อระบบระบายความร้อนทำให้ช่องทางน้ำแคบลง น้ำไหลเวียนไม่สะดวกจะต้องหมั่นทำความสะอาดตามระยะเวลาที่กำหนด

2.  ระบบปิด ประกอบด้วยปั๊มน้ำ หม้อน้ำ หรือตัวแลกเปลี่ยนความร้อน น้ำระบายความร้อนจำนวนเดิมจะหมุนเวียนอยู่ในบริเวณพื้นที่จำกัดนั้น น้ำที่รับความร้อนจากเครื่องยนต์ จะไหลผ่านรังผึ้ง (Radiator) อากาศที่ไหลผ่านรังผึ้งจะพาเอาความร้อน ไปด้วยทำให้รังผึ้งเย็นลง ตามรูปที่ 6-13 แสดงระบบระบายความร้อนแบบปิดปั๊มน้ำทำหน้าที่ดันน้ำผ่านระบบและหมุดเวียนผ่านเครื่องยนต์ จนเครื่องยนต์มีอุณหภูมิถึงจุดที่เทอร์โมสตาท (Thermostat) จะเปิดให้น้ำไหลผ่านรังผึ้ง ที่บริเวณใกล้กับรังผึ้งจะมีพัดลมระบายความร้อน ที่ต่อสายพานร่วมกับเพลาของเครื่องยนต์ ทำหน้าที่เป่าลมระบายความร้อนให้กับน้ำภายในรังผึ้งเมื่อน้ำเย็นตัวลง ก็จะไหลกลับเข้าไปในเครื่องยนต์ เพื่อระบายความร้อนให้กับเครื่องยนต์ใหม่อีกครั้งหนึ่งวนเวียนอยู่เช่นนี้ตลอดไป ตามรูปจะเห็นช่องทางน้ำในเสื้อสูบยาวตลอดกระบอกสูบ มีช่องน้ำรอบๆ กระบอกสูบและที่ลิ้นฝาสูบด้วยเป็นการช่วยป้องกันไม่ให้เกิดการบิดเบี้ยวอันเนื่องมาจากการระบายความร้อนไม่เท่ากันและยังมีช้องทางน้ำในเสื้อสูบไว้เพื่อระบายความร้อนให้แก่หัวฉีดด้วย ข้อดีของระบบปิดนี้คือ ทีท่อทางระบายความร้อนในเสื้อสูบ ไม่สกปรกสามารถใช้น้ำบริสุทธิ์ หรือน้ำที่ผ่านกรรมวิธีทางเคมีแล้วในการหมุดเวียน จึงมีตะกอนจับในช่องทางน้ำน้อยมาก หรือไม่มีเลย ทำให้หล่อเย็นหรือระบายความร้อนได้ทั่วถึงดี สามารถควบคุมอุรหภูมิของเครื่องยนต์ได้ดีหว่าแบบเปิดและเครื่องยนต์จะมีอุณหภูมิพอเหมาะขณะใช้งาน

การระบายความร้อนด้วยอากาศ ใช้หลักการของธรรมชาติคือ เมื่อใดที่มีความแตกต่างของอุณหภูมิระหว่างวัตถุที่อยู่ใกล้กัน หารไหลของความร้อนจะเกิดขึ้นจากวัตถุที่มีอุณหภูมิสูง ไปสู่วัตถุที่มีอุณหภูมิต่ำ วิธีการส่งถ่ายความร้อนมี 3 วิธีคือ การนำ การพา และการแผ่รังสี ความร้อนที่เกิดจากการเผาไหม้ของเชื้อเพลิง จะกระจายไปในระบบระบายความร้อนผนังห้องเผาไหม้ และลูกสูบจะรับความร้อนบางส่วนนี่มาโดยการแผ่รังสีโดยตรง บางส่วนส่งผ่านผนังโลหะโดยการนำความร้อนจาก๊าซร้อนในบริเวณใกล้เคียงกับผนังโลหะ

เมื่ออากาศเย็นไหลผ่านพื้นผิวโลหะความร้อน อากาศใกล้กับพื้นผิวจะเกิดการหมุดวนความเร็วของอากาศที่กำลังเคลื่อนที่จะลดลง เนื่องจากความฝืดของพื้นผิว การที่จะทำให้เกิดการระบายความร้อนได้ดี จะต้องทำให้พื้นที่ผิวมีลักษณะเป็นครีบ โดยจะต้องคำนึงถึงความสะดวกในสร้าง มีความเข็งแรงทางกล มีการระบายความร้อนได้ดี ขนาดและระยะห่างของครีบ ขึ้นอยู่กับจำนวนความร้อนที่จะระบายทิ้งไป, วัสดุที่ใช้ทำครีบ, เส้นผ่าศูนย์กลางของกระบอกสูบ, ความเร็วและอุณหภูมิของอากาศที่ระบายความร้อน ครีบที่สั้นและมีจำนวนมาก จะดีกว่าครีบที่ใหญ่และมีจำนวนน้อยกว่า เครื่องยนต์ดีเซลที่ระบายความร้อนด้วยอากาศ มักจะมีพัดลมที่ถูกขับโดยเครื่องยนต์เพื่อให้มีปริมาณของอากาศพอเพียงและมีตัวบังคับทิศทางของอากาศให้ไประบายความร้อนตามส่วนต่างๆ ของเครื่องยนต์ ข้อดีของเครื่องยนต์ที่ระบายความร้อนด้วยอากาศคือ

-  มีน้ำหนักน้อยกว่าเครื่องยนต์ที่ระบายความร้อนด้วยน้ำประมาณ 10% เนื่องจากมีอุปกรณ์ประกอบน้อย

-     มีขนาดกระทัดรัดกว่า ไม่มีการรั่วของตัวระบายความร้อน

-   ทำงานภายใต้สภาพบรรยากาศช่องกว้างกว่า คือ ใช้ได้เกือบทุกสภาพอากาศไม่ว่าร้อน หรือหนาว

-     มีอายุการใช้งานนานกว่า

 

7. ระบบหล่อลื่น

          โดยทั่วไปเครื่องยนต์จะมีระบบหล่อลื่น โดยมีน้ำมันเครื่องเป็นตัวหล่อลื่น ซึ่งต้องใช้ปั๊มเป็นตัวสร้างแรงดัน แล้วส่งไปเลี้ยงชิ้นส่วนต่างๆ เช่น ที่เพลาข้อเหวี่ยง ก้านสูบแบริ่งสลักลูกสูบ ผนังของกระบอกสูบ และส่วนที่มีการเคลื่อนไหวต่างๆอุปกรณ์ที่สำคัญของระบบหล่อลื่นคือ อ่างน้ำมันเครื่อง, ปั๊มสำหรับสูบ น้ำมันเครื่องจากอ่างเก็บไปยังช่องทางต่างๆและแบริ่ง, ตัวหล่อเย็น น้ำมันเครื่อง เพื่อระบายความร้อนออกจากน้ำมัน, เครื่องกรองเพื่อกรองสิ่งสกปรกที่เกิดขึ้น, ท่อต่างๆ, ลิ้น และเกจวัดลำดับของน้ำมัน

          จุดประสงค์ของการหล่อลื่นมีไว้เพื่อลดกำลังงานที่สูญเสีย เนื่องจากแรงเสียดทานลดการสึกหรอพื้นผิวที่เสียดสีกัน ระบายความร้อนจากแบริ่ง กระบอกสูบ และลูกสูบนอกจากนั้นแผ่นฟิล์มของน้ำมันหล่อลื่นบนผนังกระบอกสูบ ยังทำหน้าที่ป้องกันไม่ให้ก๊าซที่เกิดจาการเผาไหม้ ไหลเข้าไปในห้องเพลาข้องเหวี่ยงด้วย ดังนั้นระบบการหล่อลื่นในเครื่องยนต์จึงมีความสำคัญมาก ในการยืดอายุการใช้งาน และทำให้ประสิทธิภาพของเครื่องยนต์ดีขึ้น

          การหล่อลื่นเครื่องยนต์โดยใช้กำลังดัน เป็นวิธีที่นิยมใช้กันมากในการหล่อลื่นชิ้นส่วนทุกชนิดที่ไม่ได้รับการหล่อลื่น โดยวิธีวิดสาดจากพื้นห้องเพลาข้อเหวี่ยง การทำงานระบบนี้คือ น้ำมันหล่อลื่นจะถูกดูดจากทางด้านล่างของห้องเพลาข้องเหวี่ยง หรืออ่างน้ำมันเครื่อง โดยปั๊มเฟือง (Gear type pump) ซึ่งจะปั๊มน้ำมันหล่อลื่นผ่านเครื่องกรอง และตัวหล่อเย็นน้ำมันเครื่องไปยังท่อใหญ่ แล้วแยกผ่านท่อแยกไปยังเมนแบริ่งจากเมนแบริ่งน้ำมันหล่อลื่นทั้งหมดจะผ่านไปยังรูที่เจาะในเพลา และจูเราะทะแยงไปยังแบริ่งข้องเหวี่ยง จากนั้นน้ำมันจะผ่านรูที่เจาะในก้ามสูบ ไปยังแบริ่งสลักลูกสูบในเครื่องยนต์บางแบบ น้ำมันจากแบริ่งสลัดลูกสูบ จะใช้เพื่อระบายความร้อนลุกสูบ ท่อแยกที่ต่อกับท่อใหญ่อีกท่อหนึ่งจะพาน้ำมันหล่อลื่น ไปยังแบริ่งเพลาลูกเบี้ยว เฟือง และชิ้นส่วนอื่นๆ ที่ต้องการหล่อลื่นกำลังดันน้ำมันหล่อลื่นในท่อใหญ่ประมาณ 20-75 ปอนด์/ตารางนิ้ว แม้ว่าเครื่องยนต์จะได้รับการออกแบบดีอย่างไร ไม่ว่าจะด้านการใช้วัสดุอย่างดี มีความแข็งแรง มีประสิทธิภาพทางความร้อนเป็นเลิศ ถ้าไม่ได้รับความเอาใจใส่อย่างเหมาะสมต่อระบบการหล่อลื่นชิ้นส่วนที่เคลื่นที่ เครื่องยนต์ย่อมจะทำงานได้ไม่สมบูรณ์เกิดความสึกหรอมากและอายุการใช้งานสั้น

 

8. ระบบเชื้อเพลิง

ระบบเชื้อเพลิงของเครื่องยนต์ดีเซลคือ ระบบการส่งจ่ายน้ำมันเชื้อเพลิงจากถังเก็บ (Storage tank) ไปยังถังเก็บเล็กที่ตั้งไว้ในที่สูง จากถังเก็บเล็กนี้ น้ำมันเชื้อเพลิงจะไหลเข้าไปในเครื่องยนต์ โดยอาศัยแรงหน่วงของโลก และจะมีปั๊มกำลังดันสูง หรือเครื่องอัดอากาศเป็นตัวช่วยส่งให้น้ำมันเชื้อเพลิงเข้าสู่ห้องเผาไหม้ ทำให้เกิดการทำงานของเครื่องยนต์ขึ้น

          ระบบฉีดน้ำมันเชื้อเพลิงก็เป็นระบบที่สำคัญอีกประการหนึ่งในการที่จะทำให้เครื่องยนค์ ทำงานได้อย่างมีประสิทธิภาพ หน้าที่ของระบบเชื้อเพลิง ที่สำคัญมีดังนี้

1.  ปรับปริมาณเชื้อเพลิงให้เหมาะสมกับโหลด หรือความเร็วได้ถูกต้องแน่นอนเพื่อให้การเผาไหม้เชื้อเพลิงได้หมดพอดี จำนวนเชื้อเพลิงที่จ่ายไปแต่ละลูกสูบจะต้องเท่ากันและคงที่ทุกครั้ง เครื่องยนต์จะเดินด้วยความเร็วสม่ำเสมอ โดยที่เมื่อมีงานหนักจะจ่ายน้ำมันมาก งานเบาจะจ่ายน้ำมันน้อย

2. ฉีดน้ำมันเชื้อเพลิงในจังหวะเวลาที่ถูกต้องทุกครั้ง เพื่อให้ได้กำลังงานสูงสุดประหยัดเชื้อเพลิง การเผาไหม้สะอาดหมดจด ถ้าฉีดเชื้อเพลิงเร็วไป การจุดระเบิดจะล่าช้าเพราะอุณหภูมิยังไม่สูงพอ ทำให้เครื่องยนต์เดินไม่เรียบ เกิดเสียงดัง สิ้นเปลืองเชื้อเพลิง ถ้าฉีดเชื้อเพลิงช้าเกินไป น้ำมันเชื้อเพลิงจะเปาไหม้ไม่หมด เกิดการเผาไหม้ได้เพียงเล็กน้อย ลิ้นไอเสียจะเปิด กำลังของเครื่องยนต์จะตก เครื่องร้อนจัด สิ้นเปลืองน้ำมันเชื้อเพลิงสูง มีควันสีดำมาก

3. มีอัตราการฉีดเชื้อเพลิงอย่างเหมาะสม หมายถึง จำนวนน้ำมันเชื้อเพลิง ที่ถูกฉีดเข้าไปในห้องเผาไหม้ ต่อระยะเวลาหน่วยหนึ่งหรือต่อองศาที่ข้องเหวี่ยงหมุดไป

4. เชื้อเพลิงที่ฉีดจะต้องเป็นฝอยละออง เหมาะสมกับชนิดของห้องเผาไหม้คือ ห้องเผาไหม้บางแบบต้องการฝอยละเอียดเหมือนละอองหมอก บางแบบไม่ต้องละเอียดมากนัก การที่เชื้อเพลิงมีฝอยละเอียดพอเหมาะ จะช่วยให้การเริ่มต้นขบวนการเผาไหม้เร็วขึ้น เชื้อเพลิงเป็นไอได้เร็ว การเผาไหม้หมดจน

5.   การฉีดเชื้อเพลิงจะต้องกระจาย อย่างทั่วถึงทุกส่วนของห้องการเผาไหม้ เป็นการดึงออกซิเจนมาทำปฏิกริยาช่วยในการเผาไหม้ได้ทั่วถึง แต่ถ้าการแผ่กระจายไม่ดี เชื้อเพลิงบางส่วนจะไม่เผาไหม้ ออกซิเจนที่มีอยู่บางส่วนจะไม่ได้ถูกใช้งาน กำลังของเครื่องยนต์จะตกลงและสิ้นเปลืองเชื้อเพลิง

          ระบบฉีดเชื้อเพลิงที่ใช้กับเครื่องยนต์ดีเซล แบ่งออกเป็น 2 ระบบใหญ่ๆ คือ

1. ระบบฉีดเชื้อเพลิงด้วยอากาศ อากาศอัดกำลังดันสูงประมาณ 800-1,200ปอนด์/ตารางนิ้ว จากเครื่องอัดอากาศ (Air compressor) ซึ่งขับโดยตัวเครื่องยนต์เองจะเข้าทางท่ออากาศมาอยู่ที่ปลายหัวฉีด แต่ไหลออกทางปลายหัวฉีดไม่ได้เพราะเข็มนมหนูยังปิดบ่าอยู่ ขณะเดียวกันน้ำมันที่ผ่านปั๊มควบคุมการจ่ายน้ำมันเชื้อเพลิงแล้ว ก็จะเข้าทางท่อน้ำมันในจังหวะฉีด กระเดื่องจะยกบ่าลิ้นให้เปิด โดยการเตะของลูกเบี้ยวทำให้อากาศกำลังดันสูง ดันน้ำมันเชื้อเพลิงผ่านไปยังรูนมหนูของหัวฉีดเข่าสู่ห้องเผาไหม้เชื้อเพลิงจะถูกพ่นออกเป็นฝอยละออง กระจายไปทั่วห้องเผาไหม้ด้วยความเร็วสูง รวมตัวกับอากาศอัดที่อยู่เหนือกระบอกสูบเกิดการลุกไหม้ขึ้น ปัจจุบันระบบฉีดเชื้อเพลิงแบบนี้ยังคงมีใช้อยู่บ้าง และไม่มากนัก

2. ระบบฉีดเชื้อเพลิงแบบกลไห ทำงานโดยใช้ปั๊มอัดดันน้ำมันเชื้อเพลิง เข้าหัวฉีดเพื่อพ่นน้ำมันให้เป็นฝอยละอองเข้าไปในห้องเผาไหม้ ปั๊มส่วนใหญ่จะเป็นชนิดลูกสูบ (Plunger) ดันน้ำมันเชื้อเพลิง แบ่งเป็นระบบต่างๆ ดังนี้

2.1 ระบบท่อร่วม มีปั๊มตัวเดียวทำหน้าที่อัดน้ำมันเชื้อเพลิงไปยังลูกสูบต่างๆ โดยมีกลไกแบ่งปริมาณเชื้อเพลิงประจำสูบละตัว

2.2   ระบบจานจ่ายมีตัวปั๊มตัวเดียว ทำหน้าที่แบ่งปริมาณเชื้อเพลิงและอัดเชื้อ

เพลิง สำหรับทุกๆ สูบของเครื่องยนต์ และมีกลไกทำหน้าที่จ่าย  เชื้อเพลิงไปยังสูบต่างๆ นั่นคือ เครื่อง 4 สูบ จะมีลูกปั๊มเพียงชุดเดียว

2.2   ระบบปั๊มเดียวเฉพาะสูบ มีปั๊มสำหรับทำหน้าที่แบ่งปริมาณเชื้อเพลิง และอัด

เชื้อเพลิงสำหรับแต่ละสูบของเครื่องยนต์ โดยหัวฉีดและปั๊มอยู่แยกจากกัน นั่นคือเครื่อง 4 สูบ จะมีลูกปั๊ม 4 ชุด

2.3 ระบบยูนิต อินเจ็คเตอร์ (Unit injector) เหมือนกับระบบปั๊มเดี่ยว เฉพาะสูบ

 แต่ปั๊มกับหัวฉีดรวมอยู่ในชุดเดียวกันที่ฝาสูบ โดยไม่มีท่อแรงดันสูง

 

9. การใช้และการระวังรักษาเครื่องยนต์

          โดยปกติเครื่องยนต์ทั่วไป  บริษัทผู้ผลิตจะมีคู่มือการใช้และการบำรุงรักษาประจำแต่ละเครื่อง ซึ่งมีรายละเอียดปลีกย่อย แตกต่างกัน แต่หลักการใหญ่ๆ มักจะเหมือนกันโดยมีหัวข้อที่จะต้องพิจารณาดังนี้

          ก่อนเริ่มเดินเครื่อง

1. ตรวจ เติมน้ำระบายความร้อนให้ได้ระดับที่ต้องการ (ถ้าเป็นเครื่องยนต์ชนิดระบายความร้อนด้วยน้ำ)

2.  ตรวจ เติมน้ำมันหล่อลื่นให้ได้ระดับที่กำหนด

3.  ตรวจ เติมน้ำมันเชื้อเพลิงให้เติมถัง

4. ทำความสะอาดไส้กรอง ทั้งไส้กรองน้ำมันเชื้อเพลิง, น้ำมันหล่อลื่น และไส้กรองอากาศ

5.  ทำความสะอาดถังอัดลม โดยการเปิดก๊อกระบายน้ำ (Drain cock) ที่อยู่ด้านล่างของถังให้น้ำออกจนหมด แล้วปิดก๊อก ทำการอัดลมให้ได้แรงดันตามที่กำหนด (ถ้าเป็นเครื่องยนต์ชนิดสตาร์ทด้วยลมอัด)

6.  หมุดเครื่องหลายๆ รอบ เพื่อดูว่าหมุดสะดวกหรือมีการติดขัดหรือไม่

7.  ปั๊มน้ำมันหล่อลื่นด้วยมือ ตรวจดูว่าการไหลของน้ำมันหล่อลื่น ที่แบริ่ง, สลักลูกสูบหรือดูที่เกจวัดน้ำมันเครื่องว่าได้แรงดันตามพิกัดหรือไม่

8.  เปิดลิ้นระบบน้ำมันเชื้อเพลิง ตั้งคันเร่งไว้ประมาณ 30% ของค่าสูงสุด

เริ่มเดินเครื่อง

1. ตั้งตำแหน่งของลูกสูบ ให้อยู่ในจังหวัดกำลัง โดยการหมุดที่ล้อช่วยแรง (Fly wheel)ให้ลูกสูบผ่านศูนย์ตายบนไปประมาณ 10-15 องศา เครื่องยนต์ทั่วไปจะมีเครื่องหมายให้เห็นเป็นที่สังเกตได้ (ถ้าเป็นเครื่องยนต์ชนิดสตาร์ทด้วยอัดลม)

2.  เปิดลมเข้าสูบ หรือเปิดสวิตช์สตาร์ท

3.  เมื่อเครื่องติด ให้ตรวจดูแรงดันของน้ำมันหล่อลื่นว่าปกติหรือไม่

4.  ตรวจดูระบบน้ำระบายความร้อน

5.  เดินเครื่องด้วยความเร็วเดินเบา และตัวเปล่าก่อนเพื่ออุ่นเครื่องให้ร้อน โดยใช้เวลา 10-15 นาที ระหว่างอุ่นเครื่องอาจทำการปรับค่าต่างๆ ทางด้านเครื่องกำเนิดไฟฟ้า เช่น ความถี่และแรงดันไฟฟ้า ให้ได้ตามพิกัด แล้วจึงทำการจ่ายโหลด

 

การหยุดเครื่อง

1.  ปลดโหลดทางไฟฟ้าของเครื่องไฟฟ้าออกจากระบบก่อนให้เรียบร้อย

2.  ลดความเร็วของเครื่องยนต์ ให้เดินเบาตัวเปล่าสักครู่หนึ่ง

3.  ดับเครื่อง โดยการผลัก หรือเลื่อนคันเร่งน้ำมันเชื้อเพลิงไปไว้ในตำแหน่งหยุด

      4.  ปิดลิ้นน้ำมันเชื้อเพลิงจากถังเก็บ

      5. ถ้าจะหยุดเครื่องหลายวัน ต้องถ่ายน้ำระบายความร้อนออกให้หมด ป้องกัน

การเกิดสนิม และตะกรันในท่อ สวิตช์ต่างๆ ต้องตัดออก ส่วนตัดต่อในการส่งกำลังจะต้องปลดให้อยู่ในตำแหน่งว่าง (Neutral)

 
การระวังรักษาเครื่องยนต์

1.   ตรวจอ่างน้ำมันเครื่อง อย่าให้มีสิ่งสกปรกตกค้างอยู่

2.  ระวังอย่าให้มีน้ำผสมอยู่ในระบบน้ำมัน ทั้งน้ำมันเชื้อเพลิง และน้ำมันหล่อลื่น

3. หมั่นทำความสะอาดเครื่องยนต์อยู่เสมอ เพื่อจะได้เห็นสิ่งผิดปกติ หรือการชำรุดของเครื่องยนต์ เช่น การรั่วไหลของน้ำ หรือน้ำมัน เนื่องจากการแตก รั่วของชิ้นส่วนเครื่องยนต์ เพื่อจะทำการแก้ไขได้ทันท่วงที

4. ทำความสะอาดไส้กรองน้ำมัน ไส้กรองอากาศ หรือเปลี่ยนไส้กรองตามกำหนดระยะเวลาในคู่มือการใช้เครื่อง

5.    เปลี่ยนน้ำมันหล่อลื่นตามระยะเวลาที่กำหนด

6.  ต้องรักษาถังน้ำมันเชื้อเพลิงให้สะอาด เพราะถ้ามีฝุ่นละอองลงไป จะทำให้เกิดขัดข้องในระบบ

7.    อย่าปล่อยให้เครื่องดับ เพราะน้ำมันเชื้อเพลิงหมดถัง จำทำให้เกิดฟองอากาศในระบบเชื้อเพลิง และสิ่งสกปรกที่ก้นถังจะเข้าไปในท่อทางเดินน้ำมัน